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Abet-Analytical expressions are obtained for the temperature distribution and heat transfer capacity 
of a belt type radiator. The problem is shown to reduce to two second-order ordinary differential equations 
whose solutions are coupled by two common sets of boundary conditions. One of these equations is non- 
linear and cannot be solved analytically in terms of known functions. Singular perturbation theory is 
employed to derive uniformly valid solutions of this equation for small values of the radiation*onduction 
parameter, E. In order to exhibit the qualitative trends of these expressions, the temperature distribution, 

correct to second-order, is calculated for a representative system. 

NOMENCLATURE 

length of belt segment in contact with 
condenser drum ; 
constant, defined in equation (24); 
constant, defined in equation (24); 
constants ; 
specific heat of belt material ; 
thermal contact coefficient ; 
thermalconductivity ofthebelt material ; 
total belt length; 
nondimensional heat transfer capacity 
of the radiator, = (tj/h WI*) (o.!/puc,t)* ; 

heat transfer capacity of the radiator ; 
_ _ 
belt temperature ; 
condenser drum temperature ; 
belt thickness ; 
belt velocity ; 
belt width ; 
nondimensional length coordinate ; 
length coordinate. 

total hemispherical emittance of the 
outer belt surface ; 
parameter defined as the ratio of con- 
ductive energy flux to radiative energy 
flux, = (k/puc,l) ; 
nondimensional temperature ; 
nondimensional condenser 
temperature ; 

drum 

n-th order nondimensional temperature ; 
density of the belt material ; 
Stefan-Boltzmann constant. 

1. INTRODUCJ-ION 

THE OPERATION of spaceborne closed cycle 
powerplants requires that all of the degraded 
thermal energy not converted into work must be 
rejected to the environment. In space the only 
energy transfer mechanism available to ac- 
complish this rejection is thermal radiation. 
Most conventional space powerplant designs 

Greek symbols employ the circulation of either the working 
@-, parameter defined as the ratio of the fluid or a secondary heat exchange fluid to 

energy flux from the drum to the belt transport waste energy to one or more radiators. 
over the convected energy flux, These radiators usually consist of supply and 
= (hl/puc,t); return manifolds which are connected by a 
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network oftubing that forms the actual radiating 
surfaces. Because of the large amount of hard- 
ware required, radiators of this type impose 
severe weight penalties on the powerplant 
designer. They may, for example, comprise one- 
half of the overall powerplant weight for power 
levels above 1 MW [ 11. There are also a number 
of reliability problems associated with liquid- 
filled radiators such as leakage due to component 
failures or meteoroid punctures and freezing of 
the working fluid during periods of minimal 
power output. 

In an effort to circumvent the inherent 
problems of liquid-filled radiators, Weatherston 
and Smith [l] proposed a novel device called 
the belt, or “moving fin”, radiator. Both 
Weatherston and Smith and, subsequently, 
Burge [Z] have demonstrated that reductions in 
radiator weight of up to 60 per cent are attainable 
by means of this concept. 

This radiator consists of two primary com- 
ponents: (1) a long flexible belt, and (2) a 
condenser drum which is heated by the waste 
energy of the powerplant. The coolest part of the 
belt is brought into contact with the drum where 
energy is transferred to the belt by conduction, 
thereby raising the temperature of the belt to its 
maximum value. As an element of the belt 
moves away from the drum its temperature is 
reduced, mainly by radiation to the environ- 
ment, and to some extent by conduction along 
the belt. Thus, in steady-state operation an 
overall balance is achieved between the energy 
transferred from the drum to the belt by 
conduction and the energy transferred from the 
belt to the environment by radiation. 

Two basic configurations of the belt radiator 
have been proposed. The original system of 
Weatherston and Smith [I] shown in Fig. la 
employs a revolving condenser drum. The so- 
called “revolving belt” system envisioned by 
Burge [2], however, uses a fixed condenser drum 
with the entire belt itself revolving about the 
drum as shown in Fig. lb. Burge has shown that 
the revolving belt system is superior for power- 
plant outputs between one and ten megawatts, 

FIG. 1. Basic configurations of the belt radiator. 
(a) Revolving drum 
(b) Revolving belt 

the revolving drum system best for outputs 
greater than ten megawatts, and that both 
systems perform equally well for outputs less 
than one megawatt. The analysis presented in 
this paper applies to both ofthese configurations. 

The analyses of Weatherston and Smith [ 1,3] 
are based upon simplified calculations that are 
directed at exhibiting the weight-saving charac- 
teristics of the belt radiator system. McGean [4] 
performed a regular perturbation analysis ap- 
propriate to the “weak radiation” regime. It will 
be shown in this paper, however, that typical 
systems will operate in the “weak conduction” 
rather than the “weak radiation” regime. Burge 
[2] completed a more detailed analysis in which 
conduction in the belt is completely neglected 
without rationally assessing the effect of this 
assumption. As shown in the analysis,* taking 
conduction into account changes the problem 
from a regular to a singular perturbation 
problem. It was, therefore, felt that this effect 
should be investigated since past experience 
has shown that singular perturbation problems 
sometimes yield rather unexpected results. 

Other investigators have used singular 
perturbation theory to solve combined 
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conduction-radiation problems of this type. 
Lick [5] examined the case of a radiating gas 
contained between two parallel plates, while 
Mueller and Malmuth [6] and Malmuth, Kascic 
and Mueller [7] investigated the temperature 
distributions in radiating heat shields. 

2. ANALYSIS 

2.1 Formulation of the problem 
The analysis is based on the following 

assumptions : 
(1) The heat transfer from the condenser drum 

(2) 

(3) 
(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

to the moving belt may be characterized by 
a “thermal contact coefficient”, h. 
The region of heat transfer to the drum is 
shielded such that no radiation losses occur 
in this zone. 
The belt velocity is a constant. 
The thermal properties of the belt are 
constant. 
Radiation from the belt takes place only 
on the outside surface of the belt. 
The belt is radiating to a sink at absolute zero 
temperature. 
The temperature gradient across the thick- 
ness of the belt and “end effects” at the 
sides are negligible ; that is, the temperature 
distribution is one-dimensional. 
The condenser drum temperature is a 
constant. 
The local radius of curvature of the belt is 
everywhere large enough such that the belt 
may be adequately described by a rectangular 
coordinate system. 

Performing an energy balance on a differential 
element of the belt that is in contact with the 
drum (0 G x < a-), we obtain 

A BELT TYPE RADIATOR 

(a+ <x < I),wehave 
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d2T 
oET4 - kt dx2 + 

dT 
put t - = 0 

p dx 
(2) 

where the first term is the radiative energy flux 
from the belt to the surroundings and the 
second and third terms retain the same meanings 
as in equation (1). The symbols are defined in 
the Nomenclature. These equations are coupled 
by two sets of common boundary conditions 
which are determined by noting that both the 
temperature and the energy flux must be 
continuous across any transverse plane through 
the belt. It follows that 

T(,=,- = TI,=,+ (3) 

T(,=, = T(,=, (4) 

dT dT 

;i;l x=(I- = dx I I 
(5) 

x=0+ 

dT dT 

Z x=o = dx x=l. I I 
(6) 

The governing equations and their boundary 
conditions are now nondimensionalized by 
introducing the following nondimensional 
variables : 

~E[T] z [ 1 
-+ = nondimensional 

- temperature 

and 

X - 3 F nondimensional length. [I 
Substituting these variables into equations (l)- 
(6) yields 

h(T- TD) - kd$+ pvc,$= 0 

where the first term is the energy flux from the 
drum to the belt, the second term is the con- 
ductive energy flux, and the third term is the 
convected energy flux. Similarly, for a differential 
element of the belt not in contact with the drum 

qx=.-,l = e(x=o+,l 

01x=0 = e\,=, 
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(12) 

where 

k 

“‘puc,r 

is the ratio of the conductive energy flux to the 
radiative energy flux 

is the ratio of the energy flux from the drum to 
the belt over the convected energy flux, 8, is the 
nondimensional condenser drum temperature. 
If the values of the conduction-radiation para- 
meter E are calculated for typical hardware 
systems such as those proposed by Weatherston 
and Smith [l] and Burge [2], it is found that 
E 4 1; that is, the “weak conduction” regime is 
the one of practical interest. Furthermore, 
practical considerations also dictate that the 
product stl always approaches zero as E 
approaches zero. 

Equation (7) is a linear, second order, ordinary 
differential equation with constant coefficients 
whose solution is easily shown to be 

(3(X) = 8, + Aeml@-““) + Be”‘% 

(0,x.+ (13) 

where 

m,,&&i$l +4&a). (14) 

Equation (8) may be classified in the same 
manner except that it is nonlinear and does not 
possess a solution in terms of known functions. 
The approximate solution of this equation by 
singular perturbation theory and the use of the 
boundary to couple this solution to that given by 
equation (13) constitute the main problems 
considered in this study. 

2.2 Outer expansion 
It is now assumed that the temperature 

distribution may be represented by a straight- 
forward, or outer, asymptotic expansion in 
integral powers of the perturbation parameter E, 
that is, 

8(x; E) = e,(x) + &e,(x) + ?e,(x) 
+ . (as E --f 0, X fixed) (15) 

Substituting this expansion into equation (8), 
gathering terms of like powers of E, and noting 
that in order for this result to hold for arbitrary 
values of E that all of the coefficients must 
identically vanish, we obtain the following 
infinite set of “outer” equations : 

p : deo + 04 = 0 
dX ’ 

(164 

2: 2 + 4e;e1 = $$ UW 

2 : 2 + 4e;e2 d2el = z - 6e;e:. (164 

Note that the assumption of a straightforward 
expansion yields a system of first-order dif- 
ferential equations whereas the original 
differential equation (8) was of second order. 
Thus, the order of the governing equation has 
been reduced from two to one, and both of the 
original boundary conditions can no longer be 
satisfied. This loss of the capability of satisfying 
both boundary conditions marks the appearance 
of a singular boundary value problem [9] which 
arises from the fact that the small parameter E 
multiplies the highest order derivative in the 
original differential equation. 

A more detailed explanation of this pheno- 
mena may be obtained through further exami- 
nation of equation (8), noting that a/l + 1, and 
observing that for reasons of thermal efficiency 
belt radiators are designed so that the tempera- 
ture is O(1) over the entire belt. This equation was 
nondimensionalized such that each term in- 
dependent of its coefficient, is of O(1) and thus the 
relative magnitudes of the terms are determined 
by the coefficients themselves. Since the co- 
efficient of the conduction term is the small 
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parameter E, conduction is completely negligible 
in the lowest order solution and a radiation- 
convection balance exists over the largest part 
of the belt not in contact with the condenser 
drum. Because u/l $ 1, however, an element of 
the belt in contact with the drum is raised from 
its lowest temperature near X = 0 to its highest 
temperature near X = u/l over only a small 
percentage of the total belt length. This causes a 
relatively high rate of change of the temperature 
gradient to occur in the vicinity of X = 1. Thus, 
near X = 1 the second derivative is not O(1) but 
becomes just as large as E is small such that their 
product is O(1) and the conduction term can no 
longer be neglected. This is, of course, classical 
“boundary-layer type” behavior and it requires 
that the governing equation be resealed to 
include the effect of conduction in the vicinity 
OfX = 1. 

2.3 Inner expansion 
We define the following “inner” variables as 

follows : 

1-x s_ 
8 

and o(X) = O(X). 

Substituting these variables into equation (8) 
we have 

$g +$- - &i.14 = 0. (17) 

It is now assumed that 8 may be expanded for 
small E in the form: 

P(X; E) = B,(S) + E&(X) + &V,(R) 

+ . ..(ase+O.Xixed). 08) 

In a manner similar to that employed in the 
outer region, we substitute this expansion into 
equation (8) and obtain the following infinite 
set of “inner” equations : 

ec, d2go de, Y@+-=O 
dk 

E1 : d2h \ de1 _ 84 

dX2 dz- O 

(194 

Wb) 

E2. d282 
.-@++BgB,. (I9c) 

The boundary conditions for the outer 
problem are given by equations (9) and (11). 
The boundary conditions for the inner problem 
are given by equations (10) and (12). Rewriting 
these latter equations in inner variables, gives 

&o = @(x=0 (20) 

de dtI 

z,z_=, = -sdX x=o’ (21) 

The right-hand members of equations (9), (1 l), 
(20) and (21) may now be evaluated by means of 
equation (13). The results are 

f3!x=o+,l = 8, + A + Bem20/’ (22a) 

de 

dX,x=,+,1 I = Am, + Bm2em2J’ (22b) 

&k, = 8, + Ae-mla/l + B (2W 

de 

d8&, = 
-c[Am,e-“‘“” + Bm,]. (23b) 

Since A, B, ml and m2 are all functions of E ; 
however, equations (22) and (23) must be re- 
written to explicitly display the dependence of 
their righthand members on E. Let 

A = A, + &A1 + .z2A2 + . . . (as&+ 0) (24a) 

B = B, + cB1 + E’B, + . . (ass --+ 0). (24b) 

Expanding the expressions given by equation 
(14) for m, and m2 for small s, we obtain 

1 
m, = - + u - &a2 + 2c2a3 - 5c3a4 + . . . 

& 
(2W 

and 

m2= -a+~a2-2~2ci3+5~3a4+... (2W 

It is important to note that, for a given value of 
the small parameter E, these expansions place a 
limiting value on the other parameter in the 
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problem, CI, that is, the inequality obtain 

(4&c+ < 1 

must always be satisfied. 
Inspection of equation (25a) reveals that the 

exponential term e-“‘lo’* does not possess a 
Taylor series expansion about E = 0 and in fact 
this term is transcendentally small, that is, 

e-mM _+ 0 (ass + 0). (26) 

Expanding em@” for small s, we have 

em’“” = [e-““I’] [l + x2(u/l)s - 2cr3(u/I)s2 

+ 3 u/(C2/l)2&2 f . . .] (as E --f 0). (27) 

Substituting equations (24)-(27) into equations 
(22) and (23) and grouping the coefficients of 
like powers of E and requiring that they vanish, 
we obtain the following infinite sets of boundary 
conditions for the outer problems : 

6’: f30&=a+,l = 0, + B,e-““I’ (284 

2.4 Uniformly-valid approximation 
It is now possible to understand the basic 

structure of the overall problem. The n-th 
order solution requires the determination of live 
constants : A,, B,, the two arbitrary constants in 
the solution of the inner equation, and one 
arbitrary constant in the solution of the outer 
equation. Since A, is determined in the derivation 
of the boundary conditions to be identically zero, 
however, one of the live constants found in the 
n-th order solution will always be applicable 
to the (n + l)-th order solution. Four of the 
constants are determined by the n-th order 
boundary conditions while the fifth constant is 
found by matching [S] the inner and outer 
asymptotic expansions. Finally, the inner and 
outer solutions are combined by the additive 
method [S] to form uniformly valid solutions for 
the temperature distribution in the segment of 
the belt not in contact with the condenser drum. 
The results of carrying out these straight- 
forward operations to second-order are listed 
below. 

de0 
dX ,x=,x+/l 

= A, - aB,e-““~’ 

2 : 61 !Xza+,J = A, + a2(u/l)e-a=‘*Bo 

fe - LzO/~B 
1 (284 

d& 
dX ,~=a+/[ 

= aA, + A, + a2 

e-“l’B, - ae-Mi’B, (284 

E2 : 0, !xca+,, = A2 + (2a3r)(iay - I) 

e-dlBo + a”!e- 
1 

aQ/$ + ,-llll/lB 
2 (284 

de2 
dX ,x=,,+,l = 

-a2A, + aA, + A, - aePw”B2 

+ [-ia5(u/l)2 + 3a4(u/l) - 2a3] eC”‘Bo 

Second-order solution 

e(X) = l&, + (&A1 + &2A2)em1CY-a/‘) 

+ (B, + &BI + &‘B,)e”@ 

e-““B,. (280 

It should be noted that equation (22b) has given 
A0 = 0. Similarly, for the inner problems, we 

(O<X<$) (30a) 

e(x)= b2++-;)]-’ 

so: &=. = do + B, 

dg, 

dX 9=o = 
0 

c? : 8, Iwzo = B, 

do, 
dz x=o 

= aB, 

6’: 8,/,=, = B, 

de, -- 
dX x=o 

= a(B, - aB,). 

(294 

VW 

(29~) 

(29d) 

(29e) 

(29f) 
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+ K,[l - 4C:(l - X)]e(X-““) The constant &must be found as a root of 

++,+3[x-;)]-* [cO,+BJ3+3 (;-1)]-+ 

+n [c,+3 (+]+C‘$} 
= I!+) + B,e-“I’. (31) 

The remaining constants may then be calculated 
by means of the following expressions : 

+~2C,e’X-1/L)+E2[C2+3~-q)]- C1=8,+B, 
(32) 

I 1 
:(;(;4:J:;:+3(x_;)y 

c2 = CT3 + 3(a/l - 1) (33) 

A, = aB,,evm” - C; * (34) 

C3 = C; - aB, (35) 

+T Qn [C2+3 (jY-4)])2} 

+E2C, b2+3(+)j-3 

B1 ~~~~~<~~~~~Oc~., 

3 

- :ln [C, + 3(a/l - l)] 

(+X<l) . (30b) 

) 

_ AI _ a2B,, T e-m/’ (36) 

SEGMENT OF BELT 
.9 IN CONTACT WITH 

CONDENSER DRUM 

SEGMENT OF BELT 

NOT IN CONTACT 

WITH CONDENSER DRUM 

.4 

0 .I .2 .3 .4 .s .6 .7 .6 .9 1.0 

DIMENSIONLESS LENGTH,(X) 

FIG. 2. Second order temperature distribution. 
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c4 = c;4(B, + aB,) - 1 

- ;1n [C, + 3(u/l - l)] (37) 

A2 =,c&Ie-al’ - aA, - c?B, (1 - aa/Z)e-“I’ 

- Lq: 
[ 
4 jl”Cz -t c,- 1 1 

C5 = a& + B, - C: 

C6 = 4C:(C, - C3 - C:) + a(aB, - B, 

B, = [e-W _ c,4c;*]-l{c;+ 

(39) 

) (40) 

(38) 

x [c;’ - C?] 
[ 

f - 4c4 + 2c: 1 
+ y C; *[C, - l](C; 1 In CZ 

- C: In [C, + 3(1 - u/1)]) 

+ $ C; +[C; ‘(ln CJ2 - C: 

x (In [C, + 3(1 - LI/~)])‘] - Cr4Ct +C, 

- a2B,(a/l)e-““l’) (41) 

C7 = CL4(B2 - C,) - C; 
( 

$ - 4c4 + 2c: 
> 

- FC:{ In [C, + 3(1 - ~/r)]}~ 

- FC:(C, - 1) In [C, + 3(1 - u/1)]. (42) 

2.5 Heat transfer capacity 
These temperature distributions may now be 

used to calculate the heat transfer capacity of 
the radiator to the desired order. Since the 
steady state case is being analyzed, we may write : 

4 drum to bell = 4 belt to environment = 4 

E heat transfer capacity of the system. 

For the belt in contact with the condenser drum, 

2 

-,,<,yO OROER CMIRECTION X IO” 

---_ 
---_ 

:EROTH ORDER SOLUTION -r 

_--- 

FIRST ORDER CORRECTION X 10’ 

1 
.I .2 .3 .4 3 @ .I .S .S 1.0 

DIMENSIONLESS l_ENSTY,(XI 

FIG. 3. Comparison of the zeroth-order temperature 
distribution with its first- and second-order corrections. 

we obtain 

4 = WI % [T, - T(x)]dX. (43) 

Nondimensionalizing equation (43), we have 

(a-/l, 
0 = S P, - @(X)]dX. (44) 

Substituting the temperature distribution given 
by equation (13) and integrating yields 

Q = - (2) + (2) (l- emZoll). (45) 

This expression may be expanded to any desired 
order of E. 

3. RESULTS 

In order to exhibit the qualitative trends of the 
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!- o/l r.04. a=IO 

0' 
.4 .6 .6 I.0 1.2 1.4 1.6 

DIMENSIONLESS CONDENSER DRUM TEMPERATURE t @,,I 

FIG. 4. Heat transfer capacity of a typical belt type radiator. 

above solution, the second-order temperature 
distribution was calculated for a system similar 
to the one proposed by Burge [3]. This system 
is defined by the following set of physical 
variables : 

B = 1-O (black body) 

cP = @l (Btu/lb,“R) 

p = 500(lbJft3) 

k = 50(Btu/hft”R) 

TD = 1800 (“R) 

h = 720(Btu/hft=‘R) 

u = 2O(ft/s) 

t = 00002 (ft) 

1 = so(ft) 

a = 2 (ft). 

These variables give a value of (0277) (10-6) 
for the small parameter, E. 

The results of these calculations are given in 

Fig. 2. They show that energy transfer from the 
condenser drum to the belt by conduction 
rapidly raises the belt temperature to its maxi- 
mum value, utilizing only a small percentage of 
the total belt length to accomplish this task. 
Radiation to space then takes place over the 
remainder of the belt and causes the temperature 
to decay to its minimum value, whereupon the 
belt is again brought in contact with the drum. 
Figure 3 shows a comparison of the zeroth- 
order solution of the problem with its first and 
second-order correction terms. As can easily be 
seen, conduction has very little effect on the 
temperature distribution of the particular system 
analyzed here. 

The effects of variations in the system para- 
meters on the heat transfer capacity of the 
radiator are shown in Fig. 4. Higher order 
corrections have been neglected in the para- 
metric study since these corrections were shown 
to be negligible for systems of practical interest. 
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4. CONCLUDING REMARKS 

The effects of conduction on the temperature 
distribution in a representative system have been 
shown to be negligible. This was accomplished 
in a rational, systematic fashion by formulating 
the problem within the framework of singular 
perturbation theory. Thus, the zeroth-order 
solution, which completely neglects conduction 
in the belt, should yield suitably accurate 
solutions for engineering purposes. The higher- 
order solutions are available, however, to assess 
the effects of conduction on any system possess- 
ing a set of physical variables that differ radically 
from those of the representative system. 
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ETUDE THERMIQUE DUN RADIATEUR DE TYPE COURROIE PAR LA METHODE DES 
DEVELOPPEMENTS ASYMPTOTIQUES 

RhuncGOn a obtenu des expressions analytiques pour la distribution de temperature et la capacite de 
transfert thermique dun radiateur de type counoie. On montre que le probleme se reduit a deux equations 
differentielles du second ordre dont lea solutions sont couplees par deux systbmes communs de conditions 
aw limites. L’une de ces equations n’est pas lineaire et ne peut &tre resolue analytiquement en termes de 
fonctions connues. 0n a employ& une thtorie de perturbation pour obtenir des solutions de cette equation 
uniform&merit valables pour des petites valeurs du parametre conduction rayonnement E. Aiin de montrer 
le comportement qualitatifde ces expressions, la distribution de temperature a tte calculte jusqu’au second 

ordre pour un systeme representatif. 

THERMISCHE ANALYSE EINES STREIFENFORMIGEN STRAHLERS NACH DER METHODE 
DER UEEREINSTIMMENDEN ASYMFTOTISCHEN EXPANSIONEN 

Zmasanng-Analytische Formeln wurden erhalten fiir die Temperaturverteilung und die Wkme- 
iibertragungskapaxitt eines streifenf”ormigen Strahlers. 

Das Problem wird auf zwei gewbhnliche Differentialgleichungen xweiter Ordnung reduxiert, deren 
Lijsungen durch xwei gewiihnliche Randbedingungen gekoppelt sind. Eine dieser Gleichungen ist nicht- 
linear and kann nicht mit Hilfe bekannter Funktionen analytisch gel&t werden. 

Hier wird die Storungsrechnung angewendet, mn allgemeingtiltige Lijsungen dieser Gleichung fur 
kleine Werte dea St&lungs-Leitungs-Parameters E .zu erhalten. Urn das qualitative Verhalten dieser 
Ausdriicke zu zeigen, wird die Temperaturverteilung ftir em reprlsentatives System bis zur xweiten Ordnung 

exakt berechnet. 

TEPMBrIECKB~ AHAJIH3 JIEHTOYHOIO H3JIYYATEjIR METOAOM 
CPAIIIBBAEMbIX ACHMIlTOTB=IECHBX PA3JIOXEHHrn 

hHOTaqHx-nOnyYeHh aHa.nMTHHeCKHe BbrpaHteHHR RJIH pacnpeBeneHHH TeMnepaTypbi 
H nepeHoca Tenna 0T neHToHHor0 HsnysaTenH. nOK333H0, YTO 33n3Y3 CBOAHTCR K AByM 
06bIKHOBeHHLdM nH$@peHHHaJIbHbtM YpaBHeHHfIM BTOpOrO nOpHRKa, pemeHHR KOTOpblX 
06BeReHeHbl AByMH 06mHMH CHCTeMaMH rp3HHYHhlX yCJIOBHd. OAHO H3 BTHX yp3BHeHHti 
RBJIReTCR HeJtHHeHHbIM H He MOX(eT 6btTb pemeH0 3HaJIHTHHeCKH C HOMOmbtO H3BeCTHbIX 
+yHKHHi?. &IH OHpeAeneHHH paBHOMepHO-CXOBHmHXCH peIIIeHHH 3TOrO yp3BHeHHH npB 
MaJIbIX 3HaHeHHRX ByHHCTO-KOHByKTHBHOrO napaHeTpa E HcnonbsyeTcH cnHrynHpHaH 
TeOpHH BOBMymeHHH. fiJIH HJIJHOCTpBHHH KB’ZeCTBeHHOrO nOBeAeHHfi 3THX BbIpZKKeHHi 
paccHHTbrBaeTcH TemnepaTypHoe pacnpeAeneHHe B THHHHHOM cnysae c ToHHocTbro ~0 Z-r0 

nopHAKa. 


