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Abstract— Analytical expressions are obtained for the temperature distribution and heat transfer capacity

of a belt type radiator. The problem is shown to reduce to two second-order ordinary differential equations

whose solutions are coupled by two common sets of boundary conditions. One of these equations is non-

linear and cannot be solved analytically in terms of known functions. Singular perturbation theory is

employed to derive uniformly valid solutions of this equation for small values of the radiation—conduction

parameter, ¢. In order to exhibit the qualitative trends of these expressions, the temperature distribution,
correct to second-order, is calculated for a representative system.

NOMENCLATURE
length of belt segment in contact with
condenser drum
constant, defined in equation (24);
constant, defined in equation (24);
constants;
specific heat of belt material;
thermal contact coefficient ;
thermal conductivity ofthe belt material ;
total belt length ;
nondimensional heat transfer capacity
of the radiator, = (§/hWI)(aé/pvct)t;
heat transfer capacity of the radiator;
belt temperature ;
condenser drum temperature ;
belt thickness;
belt velocity;
belt width;
nondimensional length coordinate;
x, length coordinate.

Greek symbols
o, parameter defined as the ratio of the
energy flux from the drum to the belt
over the convected energy flux,

= (hi/pvc,p);
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total hemispherical emittance of the

outer belt surface;

g, parameter defined as the ratio of con-
ductive energy flux to radiative energy
flux, = (k/pvc,d);

6, nondimensional temperature;

fp, nondimensional  condenser
temperature ;

8,  n-thorder nondimensional temperature;

p,  density of the belt material ;

o, Stefan-Boltzmann constant.

drum

1. INTRODUCTION
THE OPERATION of spaceborne closed cycle
powerplants requires that all of the degraded
thermal energy not converted into work must be
rejected to the environment. In space the only
energy transfer mechanism available to ac-
complish this rejection is thermal radiation.
Most conventional space powerplant designs
employ the circulation of either the working
fluid or a secondary heat exchange fluid to
transport waste energy to one or more radiators.
These radiators usually consist of supply and
return manifolds which are connected by a
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network of tubing that forms the actual radiating
surfaces. Because of the large amount of hard-
ware required, radiators of this type impose
severe weight penalties on the powerplant
designer. They may, for example, comprise one-
half of the overall powerplant weight for power
levels above 1 MW [1]. There are also a number
of reliability problems associated with liquid-
filled radiators such as leakage due to component
failures or meteoroid punctures and freezing of
the working fluid during periods of minimal
power output.

In an effort to circumvent the inherent
problems of liquid-filled radiators, Weatherston
and Smith [1] proposed a novel device called
the belt, or ‘“moving fin”, radiator. Both
Weatherston and Smith and, subsequently,
Burge [2] have demonstrated that reductions in
radiator weight of up to 60 per cent are attainable
by means of this concept.

This radiator consists of two primary com-
ponents: (1) a long flexible belt, and (2) a
condenser drum which is heated by the waste
energy of the powerplant. The coolest part of the
belt is brought into contact with the drum where
energy is transferred to the belt by conduction,
thereby raising the temperature of the belt to its
maximum value. As an element of the belt
moves away from the drum its temperature is
reduced, mainly by radiation to the environ-
ment, and to some extent by conduction along
the belt. Thus, in steady-state operation an
overall balance is achieved between the energy
transferred from the drum to the belt by
conduction and the energy transferred from the
belt to the environment by radiation.

Two basic configurations of the belt radiator
have been proposed. The original system of
Weatherston and Smith [1] shown in Fig. la
employs a revolving condenser drum. The so-
called ‘“revolving belt” system envisioned by
Burge [2], however, uses a fixed condenser drum
with the entire belt itself revolving about the
drum as shown in Fig. 1b. Burge has shown that
the revolving belt system is superior for power-
plant outputs between one and ten megawatts,
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FiG. 1. Basic configurations of the belt radiator.
(a) Revolving drum
(b) Revolving belt

the revolving drum system best for outputs
greater than ten megawatts, and that both
systems perform equally well for outputs less
than one megawatt. The analysis presented in
this paper applies to both of these configurations.
The analyses of Weatherston and Smith [ 1, 3]
are based upon simplified calculations that are
directed at exhibiting the weight-saving charac-
teristics of the belt radiator system. McGean [4]
performed a regular perturbation analysis ap-
propriate to the “‘weak radiation” regime. It will
be shown in this paper, however, that typical
systems will operate in the “weak conduction™
rather than the “‘weak radiation” regime. Burge
[2] completed a more detailed analysis in which
conduction in the belt is completely neglected
without rationally assessing the effect of this
assumption. As shown in the analysis, taking
conduction into account changes the problem
from a regular to a singular perturbation
problem. It was, therefore, felt that this effect
should be investigated since past experience
has shown that singular perturbation problems
sometimes yield rather unexpected results.
Other investigators have wused singular
perturbation theory to solve combined
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conduction-radiation problems of this type.
Lick [5] examined the case of a radiating gas
contained between two parallel plates, while
Mueller and Malmuth [6] and Malmuth, Kascic
and Mueller [7] investigated the temperature
distributions in radiating heat shields.

2. ANALYSIS
2.1 Formulation of the problem
The analysis is based on the following
assumptions:

(1) The heat transfer from the condenser drum
to the moving belt may be characterized by
a “thermal contact coefficient”, h.

(2) The region of heat transfer to the drum is
shielded such that no radiation losses occur
in this zone.

(3) The belt velocity is a constant.

(4) The thermal properties of the belt are
constant.

(5) Radiation from the belt takes place only
on the outside surface of the belt.

(6) The beltis radiating to a sink at absolute zero
temperature.

(7) The temperature gradient across the thick-
ness of the belt and “end effects” at the
sides are negligible; that is, the temperature
distribution is one-dimensional.

(8) The condenser drum temperature is a
constant.

(9) The local radius of curvature of the belt is
everywhere large enough such that the belt
may be adequately described by a rectangular
coordinate system.

Performing an energy balance on a differential
element of the belt that is in contact with the
drum (0 € x € a™), we obtain

d*T aT
MT—Tp) — ki = + poet =0 (1)

where the first term is the energy flux from the
drum to the belt, the second term is the con-
ductive energy flux, and the third term is the
convected energy flux. Similarly, for a differential
element of the belt not in contact with the drum
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(@a® < x < 1), we have
d3T dT
. § _ -7 Dadul 2
otT kt o2 + pvcptdx 0 (2)

where the first term is the radiative energy flux
from the belt to the surroundings and the
second and third terms retain the same meanings
as in equation (1). The symbols are defined in
the Nomenclature. These equations are coupled
by two sets of common boundary conditions
which are determined by noting that both the
temperature and the energy flux must be
continuous across any transverse plane through
the belt. It follows that

T‘x=a‘ Tlx=a+ (3)
Tlx=0 = T|x=l (4)
dT dT
- —_-— 5
dx x=a~ dx x=a* ( )
dT daT
- = — 6
dx|i=0  dX|x=s- ()

The governing equations and their boundary
conditions are now nondimensionalized by
introducing the following nondimensional
variables:

_ pvc,t |”* _ nondimensional
6=[T] [ oél ] ~ temperature
X = [5] = nondimensional length.

Substituting these variables into equations (1)-
(6) yields

d’e de a_
eﬁ_a—a(e—epho(osx s—l—) ()
d*¢ de a*
gw_a—e“_o <—I-<X<1) 8)
Blx=a-nn = Blx=a+n ©)
Blx=o = Olx=1 (10)
de de
i = - 11
dx X=a~/l dX,x=a+/l ( )
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do _do (12
dX|yoo  dXl-, )
where
k
&=
pvc,l

is the ratio of the conductive energy flux to the
radiative energy flux

hi
puc,t

o

is the ratio of the energy flux from the drum to
the belt over the convected energy flux, 8, is the
nondimensional condenser drum temperature.
If the values of the conduction-radiation para-
meter £ are calculated for typical hardware
systems such as those proposed by Weatherston
and Smith [1] and Burge [2], it is found that
& < 1; that is, the “weak conduction” regime is
the one of practical interest. Furthermore,
practical considerations also dictate that the
product ex always approaches zero as ¢
approaches zero.

Equation (7)is a linear, second order, ordinary
differential equation with constant coefficients
whose solution is easily shown to be

0X) = 0, + Aem@—an 1 Ben
@sxs%) (13)

where

my g = L +—1—\/(1 + dea). (14)

2e 7 2
Equation (8) may be classified in the same
manner except that it is nonlinear and does not
possess a solution in terms of known functions.
The approximate solution of this equation by
singular perturbation theory and the use of the
boundary to couple this solution to that given by
equation (13) constitute the main problems
considered in this study.

2.2 Outer expansion
It is now assumed that the temperature
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distribution may be represented by a straight-
forward, or outer, asymptotic expansion in
integral powers of the perturbation parameter ¢,
that is,

0(X ;e) = 0(X) + £0,(X) + £20,(X)

+...(as e — 0, X fixed) (15)

Substituting this expansion into equation (8),
gathering terms of like powers of ¢, and noting
that in order for this result to hold for arbitrary
values of ¢ that all of the coefficients must
identically vanish, we obtain the following
infinite set of “outer” equations:

so:%i—o+ 65=0 (16a)
do d*6

gl —ﬁ + 4030, = a*)—(—g (16b)
2

92 1 ag3e, = St - 66307 (169

Note that the assumption of a straightforward
expansion yields a system of first-order dif-
ferential equations whereas the original
differential equation (8) was of second order.
Thus, the order of the governing equation has
been reduced from two to one, and both of the
original boundary conditions can no longer be
satisfied. This loss of the capability of satisfying
both boundary conditions marks the appearance
of a singular boundary value problem [9] which
arises from the fact that the small parameter ¢
multiplies the highest order derivative in the
original differential equation.

A more detailed explanation of this pheno-
mena may be obtained through further exami-
nation of equation (8), noting that a/l < 1, and
observing that for reasons of thermal efficiency
belt radiators are designed so that the tempera-
tureis 0(1) over the entire belt. This equation was
nondimensionalized such that each term, in-
dependent ofits coefficient, is of O(1) and thus the
relative magnitudes of the terms are determined
by the coefficients themselves. Since the co-
efficient of the conduction term is the small
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parameter &, conduction is completely negligible
in the lowest order solution and a radiation—
convection balance exists over the largest part
of the belt not in contact with the condenser
drum. Because a/l < 1, however, an element of
the belt in contact with the drum is raised from
its lowest temperature near X = 0 to its highest
temperature near X = a/l over only a small
percentage of the total belt length. This causes a
relatively high rate of change of the temperature
gradient to occur in the vicinity of X = 1. Thus,
near X = 1 the second derivative is not O(1) but
becomes just as large as ¢ is small such that their
product is 0(1) and the conduction term can no
longer be neglected. This is, of course, classical
“boundary-layer type” behavior and it requires
that the governing equation be rescaled to
include the effect of conduction in the vicinity
of X =1.

2.3 Inner expansion
We define the following “inner” variables as
follows:
1-X

v

X and 8(X) = 6(X).

Substituting these variables into equation (8),
we have

£

dx? dX
It is now assumed that § may be expanded for
small ¢ in the form:

0(X ;e) = 04K) + e0,(X) + e20,(X)
+...(ase = 0, X fixed).

—ef* =0. (17

(18)

In a manner similar to that employed in the
outer region, we substitute this expansion into
equation (8) and obtain the following infinite
set of “inner” equations:

2

80:3—.1(’?;+3—9X’2=0 (19a)
2

81:%7?21-+ ‘;%1 -y (19b)

A BELT TYPE RADIATOR 1169
d*, dé
52:5}—; + E‘)% = 4038, (19¢)

The boundary conditions for the outer
problem are given by equations (9) and (11).
The boundary conditions for the inner problem
are given by equations (10) and (12). Rewriting
these latter equations in inner variables, gives

9l§=o = 9.x=o (20
de dé
d—fl,;:() —Ba}}(:o. (21)

The right-hand members of equations (9), (11),
(20) and (21) may now be evaluated by means of
equation (13). The results are

Olx—q+p = 0p + A + Bem! (22a)
do
- = Am, + Bm,e™ 22b
dth=a+/l 1 2 ( )
Olg—o =0p+AAe ™" + B (23a)
df
- = —mjafl
Xz, g[Amqe + Bm,].(23b)

Since A4, B,m, and m, are all functions of &;
however, equations (22) and (23) must be re-
written to explicitly display the dependence of
their righthand members on ¢. Let

A=A0+8A1+82A2+... (aSS—>0) (24a)

B=By+¢B, +&*B,+ .. (ase—0). (24b)
Expanding the expressions given by equation

(14) for m, and m, for small ¢, we obtain

1
my=_ta— e + 2¢%a® — 5e%a* + ... (25a)
and
m, = —a + ea® — 2e%a® + 5c%0* + ... (25b)

It is important to note that, for a given value of
the small parameter ¢, these expansions place a
limiting value on the other parameter in the
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problem, «, that is, the inequality
(4ea)? < 1

must always be satisfied.

Inspection of equation (25a) reveals that the
exponential term e ™' does not possess a
Taylor series expansion about ¢ = 0 and in fact
this term is transcendentally small, that is,

e ™at 5 0 (ase — 0). (26)
Expanding €™ for small ¢, we have
e = [e™ "] [1 + «*(a/l)e — 20(a/l)e?
+ foMa/l?e? +..] (ase—0). (27)

Substituting equations (24}-(27) into equations
(22) and (23) and grouping the coefficients of
like powers of ¢ and requiring that they vanish,
we obtain the following infinite sets of boundary
conditions for the outer problems:

&% 0o lx=a+n = Op + Boe ™" (28a)
do
70 = Al _ “Boe—aa/l (28b)
dX I X=a*/l

e 10y xogry = Ay + a*(a/l)e” "B,

+e *'B,  (28¢)

ax =oad; + 4 2
dX lx=at/t aAy 2 + «

a
(1 - a7>e‘““”Bo —ae”®IB,  (28d)

a\(/1 a
&0, |xmgey = Az + (20:3 7)(2017 - 1)

e B, + cxzi;e“"“/’B1 +e B, (28e)

s,
dX X=at/l

+[—%o>(@/? + 3aM(a/l) — 223 e~ /B,

+ (@) (1 - a§)e-mﬂBl. 86

= —azAl + aAz + A3 - ae_”/‘Bz

It should be noted that equation (22b) has given
Ao = 0. Similarly, for the inner problems, we
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obtain

e%: Ogl=0 = Op + By (29a)
-2 =0 29b
X |, (29b)

gt 91 IX’=0 = B, (29¢)
dé,
54" aB, (29d)

e2:0,lx-0 = B, (29¢)
df,
&= «(B, — aBy). (291)

2.4 Uniformly-valid approximation

It is now possible to understand the basic
structure of the overall problem. The n-th
order solution requires the determination of five
constants: 4,, B,, the two arbitrary constants in
the solution of the inner equation, and one
arbitrary constant in the solution of the outer
equation. Since A, is determined in the derivation
ofthe boundary conditions to be identically zero,
however, one of the five constants found in the
n-th order solution will always be applicable
to the (n + 1)-th order solution. Four of the
constants are determined by the n-th order
boundary conditions while the fifth constant is
found by matching [8] the inner and outer
asymptotic expansions. Finally, the inner and
outer solutions are combined by the additive
method [8] to form uniformly valid solutions for
the temperature distribution in the segment of
the belt not in contact with the condenser drum.
The results of carrying out these straight-
forward operations to second-order are listed
below.

Second-order solution

O(X) = 91) + (EAI -+ 82A2)em1(X—a/l)
+ (By + B, + £2B,)e™*

(0 £X < gl:) (30a)

wn-[or s
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+ eC3[1 — 4C3(1 — X)Je* 1 The constant B,must be found as a root of
-4 a -4
+8[C2+3(X—El>] |}9D+BO)—3+3 (7—1)]
4 = 0p + Boe ", 31
x{—ln[C2+3<X—9> +C4} b Te G
3 ! The remaining constants may then be calculated
a by means of the following expressions:
+ e2Cee® 710 4 2 1C, + 3{X — - ||~
I C, =0, + B, (32)
28 = C73 -
5 {[?_ 4C. +2 cz] C, = C7®+ 3/l — 1) (33)
Ay = aBge ™' — C; % (34)

+ (16)«: - l)ln[C + 3(X %’)] C3=Ct —aB, (35)

B, =[e ' — Cc1*C; ¥

+¥<1n[c +3( ﬁ)])} 4
9 2 l x{Cz_*(slnC2+aB0C1‘4—l

+ £2C7 I:CZ + 3 (x - ] — %ln [C2 + 3(a/l - 1)])

a+
(T <X < 1) . (30b) — A, - azBo%e'“"”} (36)

~| R

SEGMENT OF BELT
-9 IN CONTACT WITH
CONDENSER DRUM

SEGMENT OF BELT
-=NOT IN CONTACT
WITH CONDENSER DRUM

DIMENSIONLESS TEMPERATURE, (&)

DIMENSIONLESS LENGTH, (X)

F1G. 2. Second order temperature distribution.
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C,=C;*(By + 0B,) — 1
- gln [C, +3@l—-1] (37
A, =.0Bje™ — A, — 0®By (1 — aa/lle”*"
—4C53 [f:— InC, + C, — 1] (38)

Cs =oaBy + B, — C‘l‘ (39)
Ce = 4C3C5 — C3 ~ C}) + a(aBy — By) (40)
B, = [e7* — Cr*C; 47 Y{C5

< [C3! = Ci] [‘%8 _4C, + zci]

+ %c; C, —11C;' I C,
— C3n[C, + 31 - /)
2
+ 2 CHC I G ~
x (In[C; + 3(1 — a/h])*] — CT4C3 ¥C
2B (L ) e
Ay — 2a Bol (40{{ l>e

— 2B (a/le” "} 41)

28
Cy=Ci%B, — Cg) — C3 <? —4c, + 2Ci)

_ §93cg{ In[C, + 3(1 — a/)]}?

- ?Ci‘(g ~ DIn[C, + 3(1 — a/D]. (42)

2.5 Heat transfer capacity

These temperature distributions may now be
used to calculate the heat transfer capacity of
the radiator to the desired order. Since the
steady state case is being analyzed, we may write :

4 drum 1o belt = 4 belt to environment — 4

= heat transfer capacity of the system.

For the belt in contact with the condenser drum,
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Fic. 3. Comparison of the zeroth-order temperature
distribution with its first- and second-order corrections.

we obtain

a

g = Wh{[T, - T(x)]dX. (43)
0

Nondimensionalizing equation (43), we have

@/
0= [ [6p, - 6()]dX. (44)
0

Substituting the temperature distribution given
by equation (13) and integrating yields

- _ <i> + <P~> (1— ema) (45)
m; m,

This expression may be expanded to any desired
order of .

3. RESULTS
In order to exhibit the qualitative trends of the
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FIG. 4. Heat transfer capacity of a typical belt type radiator.

above solution, the second-order temperature
distribution was calculated for a system similar
to the one proposed by Burge [3]. This system
is defined by the following set of physical
variables:

& = 1.0 (black body)

¢, = 01 (Btu/lb,°R)

p = 500 (Ib/ft3)

k = 50 (Btu/hft°R)

T, = 1800(°R)
h = 720 (Btu/hft2°R)
v = 20(ft/s)
t = 0-0002 (ft)
I = 50(ft)
a = 2 (ft).

These variables give a value of (0-:277) (107 6)
for the small parameter, &.
The results of these calculations are given in

Fig. 2. They show that energy transfer from the
condenser drum to the belt by conduction
rapidly raises the belt temperature to its maxi-
mum value, utilizing only a small percentage of
the total belt length to accomplish this task.
Radiation to space then takes place over the
remainder of the belt and causes the temperature
to decay to its minimum value, whereupon the
belt is again brought in contact with the drum.
Figure 3 shows a comparison of the zeroth-
order solution of the problem with its first and
second-order correction terms. As can easily be
seen, conduction has very little effect on the
temperature distribution of the particular system
analyzed here.

The effects of variations in the system para-
meters on the heat transfer capacity of the
radiator are shown in Fig. 4. Higher order
corrections have been neglected in the para-
metric study since these corrections were shown
to be negligible for systems of practical interest.
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4. CONCLUDING REMARKS

The effects of conduction on the temperature
distribution in a representative system have been
shown to be negligible. This was accomplished
in a rational, systematic fashion by formulating
the problem within the framework of singular
perturbation theory. Thus, the zeroth-order
solution, which completely neglects conduction
in the belt, should yield suitably accurate
solutions for engineering purposes. The higher-
order solutions are available, however, to assess
the effects of conduction on any system possess-
ing a set of physical variables that differ radically
from those of the representative system.
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ETUDE THERMIQUE D’UN RADIATEUR DE TYPE COURROIE PAR LA METHODE DES
DEVELOPPEMENTS ASYMPTOTIQUES

Résumé—On a obtenu des expressions analytiques pour la distribution de température et la capacité de
transfert thermique d’un radiateur de type courroie. On montre que le probléme se réduit a deux équations
différentielles du second ordre dont les solutions sont couplées par deux systémes communs de conditions
aux limites. L’une de ces équations n’est pas linéaire et ne peut €tre résolue analytiquement en termes de
fonctions connues. On a employé une théorie de perturbation pour obtenir des solutions de cette équation
uniformément valables pour des petites valeurs du paramétre conduction rayonnement ¢. Afin de montrer
le comportement qualitatif de ces expressions, la distribution de température a été calculée jusqu’au second
ordre pour un systéme représentatif.

THERMISCHE ANALYSE EINES STREIFENFORMIGEN STRAHLERS NACH DER METHODE
DER UBEREINSTIMMENDEN ASYMPTOTISCHEN EXPANSIONEN

Zusammenfassung—Analytische Formeln wurden erhalten fiir die Temperaturverteilung und die Wirme-
ibertragungskapazitiit eines streifenformigen Strahlers.

Das Problem wird auf zwei gewGhnliche Differentialgleichungen zweiter Ordnung reduziert, deren
Lésungen durch zwei gewohnliche Randbedingungen gekoppelt sind. Eine dieser Gleichungen ist nicht-
linear and kann nicht mit Hilfe bekannter Funktionen analytisch geldst werden,

Hier wird die Stdrungsrechnung angewendet, um allgemeingiiltige Losungen dieser Gleichung fiir
kleine Werte des Strahlungs-Leitungs-Parameters ¢ zu erhalten. Um das qualitative Verhalten dieser
Ausdriicke zu zeigen, wird die Temperaturverteilung fiir ein reprisentatives System bis zur zweiten Ordnung

exakt berechnet.

TEPMUYECKNN AHAJIU3 JEHTOYHOI'O UBJYYATEJISI METOIOM
CPAHIUBAEMLBIX ACUMIITOTUYECKNX PA3JIOKEHUN

Annoranua—Ilonyyens ananMTHYeCKMe BHIPQKEHMS [JIA pAacCIpefeleHAA TeMIeparypsl
M TepeHOCa TemIa OT JEeHTOYHOro uanydarend. IlokasaHo, uTo 3amavya CBOAUTCA K ABYM
OOBLIKHOBEHHBLIM Iu@depeHNUaTbHEM YPAaBHEHNAM BTOPOTO MNOPARKA, PeLIeHWA KOTOPHIX
ofbefileHeHE! AByMA OONMMHM CHUCTeMaMH TPAHMYHBIX ycaoBuit. OmHO U3 3TUX YpaBHeHWi
ABJIAETCA HEJMHEWHHIM K He MOkeT OHITh peIeHO AHANUTHIECKM ¢ MOMONILI0 H3BECTHHIX
$yaxmmit. Jlna ompemeseHuA pPaBHOMEPHO-CXOJAINMXCA PpEIUEHUA HTOT0 ypaBHEHHA IIpH
MaJHX 3HAYEHNAX JIYYNCTO-KOHZYKTMBHOTO [apaMmeTpa ¢ MCHOJb3YeTCH CHHIYJsApHAA
TeOpUA BOsMyIlenwit. [yiAa MAMIOCTpAUMH KAYECTBEHHOIO NOBENEHHUA STHX BHIPArKeHHN
pPacCUMTHIBAETCH TeMIepaTypHOe pacipefeilieHHe B THIMYHOM CJydae ¢ TOYHOCTBIO OO0 2-T0
MOpARKA.



